Derivatives - AP Calculus

Solve each of the following:

1. If
$$y = \frac{2x^5}{x+1} - 2x$$
, then $\frac{dy}{dx} =$
A) $\frac{8x^5 + 10x^4}{(x+1)^2} - 2$
B) $\frac{6x^5 + 10x^4}{(x+1)^2} - 2$
C) $\frac{10x^5 + 8x^4}{(x+1)^2} - 2$
D) $\frac{8x^5 + 10x^4}{(x+1)^2} + 2$

2.
$$\lim_{h \to 0} \frac{(2(1+h)^2 - (1+h)) - (2(1)^2 - 1)}{h} =$$

A) 1
B) 2
C) 3
D) 4

3. The position of a car is modeled by $y(t) = \frac{1}{4}t^2 - 2t + 4$ for time $t \ge 0$. What is the position of the particle when its velocity is equal to 4.

A) 12
B) 16
C) 20
D) 24

- 4. What is the slope of the line tangent to the graph of $y = 4x^3 x^2 + 3$ when x = 3
 - A) 116
 - B) 105
 - C) 108
 - D) 102

$$f(x) = \begin{cases} 3x^2 + x - 2 , \ x < -2 \\ x^2 + 4 , \ -2 \le x < 0 \\ x^2 , \ x \ge 0 \end{cases}$$

- 5. The function f is defined above. At what values of x if f(x) not differentiable?
 - A) -2 only
 - B) 0 only
- C) -2 and 0
 - D) -1 only

$$f(x) = \begin{cases} 3x^2 - 2x + 2 , x \le 2 \\ h(x) , x > 2 \end{cases}$$

6. The function f is defined above. If f is differentiable at x=2, which of the following functions could define g(x)?

A) 5xB) 10x - 10C) $2x^2 - 3$ D) 8x - 8

$$f(x) = \begin{cases} a\sqrt{x} + bx^2 - 1 , x < 4\\ \frac{16}{x} + bx , x \ge 4 \end{cases}$$

7. (CALCULATOR) The function f is defined above. For which values of *a* and *b* would make f differentiable at x = 4?

A)
$$a = 2$$
, $b = -1$

B)
$$a = \frac{44}{11}$$
, $b = \frac{12}{13}$

C)
$$a = \frac{47}{11}$$
, $b = \frac{-13}{44}$

D)
$$a = \frac{-44}{11}$$
, $b = \frac{-13}{44}$

- 8. (CALCULATOR) The function f is defined by $f(x) = x + \frac{1}{x}$. The slope of the line tangent to the graph at the point (2, 2.5) is
 - A) 0.5
 - B) 0.25
 - C) 0.75
 - D) 0.75
 - E) 0.5

9. The function f is defined by $f(x) = x + \frac{1}{x}$. The slope of the line tangent to the graph of y = f(x) at the point $(x, x + \frac{1}{x})$

(I) Approaches 0 as $x \to + \infty$;

(II) Approaches 1 as $x \to -\infty$;

(III)Approaches $-\infty$ as $x \to 0^+$;

A) I only

B) I and II

C) II and III

- D) I, II, and III
- E) None of the above

10. Find y'(x) if
$$y = (x^4 - 1)(\frac{3}{4}x^3 - x^2 + 1)$$

A) $y' = \frac{21}{4}x^6 - 6x^5 + 4x^3 - \frac{9}{4}x^2 + 2x$
B) $y' = \frac{15}{4}x^6 - 6x^5 + 4x^3 - \frac{9}{4}x^2 + 2x$
C) $y' = \frac{21}{4}x^6 - 5x^5 + 4x^3 - \frac{9}{4}x^2 + 2x$
D) $y' = \frac{21}{4}x^6 - 6x^5 + 4x^3 - \frac{9}{4}x^2 + 3x$